Lecture 6

Time-Harmonic Fields, Complex
Power

The analysis of Maxwell’s equations can be greatly simplified by assuming the fields to be
time harmonic, or sinusoidal (cosinusoidal). Electrical engineers use a method called phasor
technique [33,53], to simplify equations involving time-harmonic signals. This is also a poor-
man’s Fourier transform [54]. That is one begets the benefits of Fourier transform technique
without the knowledge of Fourier transform. Since only one time-harmonic frequency is
involved, this is also called frequency domain analysis.! Phasors are represented in complex
numbers. Therefore, the fields become complex in the frequency domain. From this, we will
also discuss the concept of complex power.

Figure 6.1: A commemorative stamp showing the contribution of Euler (courtesy of
Wikipedia and Pinterest).

1t is simple only for linear systems: for nonlinear systems, such analysis can be quite unwieldy. But rest
assured, as we will not discuss nonlinear systems in this course.
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6.1 Time-Harmonic Fields—Linear Systems

To learn phasor technique, one makes use the formula due to Euler (1707-1783) (Wikipedia)?

e!* = cosa + jsina (6.1.1)

where j = +/—1 is an imaginary number.?
From Euler’s formula, one gets

cosa = Re (e/*) (6.1.2)
Hence, all time harmonic quantities can be written as

V(z,y,2,t) = V'(z,y, 2) cos(wt + )
= V'(r)Re(e? @)
= Re (V'(r)e’*e’")
= Re (Y(r)ej“t)
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Now V(r) = V'(r)e!* is a complex number called the phasor representation or phasor of
V(r,t), a time-harmonic quantity.* Here, the phase @ = «a(r) can also be a function of
position r, or z,¥, z. Consequently, any component of a field can be expressed as

E.(x,y,z,t) = Ey(r,t) = Re {?w(r)ej‘”t} (6.1.7)

The above can be repeated for y and z components. Compactly, for the z, y, and z components
together, one can write

E(r,t) = Re {]E)(r)ej“t} (6.1.8)

H(r,t) = Re {I;I(r)ej“t} (6.1.9)

where E and H are complex vector fields. Such phasor representations of time-harmonic fields
simplify Maxwell’s equations. For instance, if one writes

B(r,t) = Re (B(r)ej“’t) (6.1.10)

2As the stamp shows, Euler was blind in one eye.

3But lo and behold, in other disciplines, v/—1 is denoted by “”, but “” is too close to the symbol for
current. So the preferred symbol for electrical engineering for an imaginary number is j: a quirkness of
convention, just as positive charges do not carry current in a wire.

4We will use under tilde to denote a complex number or a phasor here, but this notation will be dropped
later. Whether a variable is complex or real is clear from the context.
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then
%B(r,t) = %?Re []%(r)ej“t}
= Re <gt]~3(r)ej“’t)
= Re (lg(r)jwefwt) (6.1.11)

Therefore, a time derivative can be effected very simply for a time-harmonic field. One just
needs to multiply jw to the phasor representation of a field or a signal. Hence, given Faraday’s
law that

0B
VXE=—-——-M 6.1.12
x 5 ( )
assuming that all quantities are time harmonic, then with (6.1.10) and what follows,
E(r,t) = Re [E(r)ej‘*’t} (6.1.13)
M(r, ) = Re {M(r)ej“’t} (6.1.14)

using (6.1.11) and the above into (6.1.12), one gets first

V x E(r, ) = Re [v X ]E)(r)ej‘”t] (6.1.15)
and then
Re [V X ]E;(r)ej‘“t} = Re []z:(r) jwej“’t] ~ Re [1\~/I(r)ejwt} (6.1.16)
Since if
Re [A(r)e’*"] = Re [B(r)e?'], Wt (6.1.17)

then A(r) = B(r), it must be true from (6.1.16) that
V x E(r) = —jwB(r) — M(r) (6.1.18)

Therefore, finding the phasor representation of an equation in the frequency domain is clear:
whenever we have %, we replace it by jw. Applying this methodically to the other Maxwell’s
equations, we have

V x I:I(r) = jw]?(r) + g(r) (6.1.19)
V- ]3(1‘) = ge(r) (6.1.20)
V-B(r) = gm(r) (6.1.21)

In the above, the phasors are functions of frequency. For instance, H(r) should rightly be
written as H(r,w), but the w dependence is implied.
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6.2 Fourier Transform Technique

In the phasor representation, Maxwell’s equations has no time derivatives; hence, the equa-
tions are simplified. We can also arrive at the above simplified equations using Fourier
transform technique. To this end, we use Faraday’s law as an example. By letting

1 ” .
E(I‘,t)=§ / E(r,w)e’* dw (6.2.1)
B(I‘ﬂf):% / B(r,w)e!“ dw (6.2.2)
1 |
M(r,t):% / M(r,w)e’“ dw (6.2.3)

Substituting the above into Faraday’s law given by (6.1.12), we get

V X /dwej‘“tE(r,w):—% / dwe?'B(r,w) — / dwe? M (r, w) (6.2.4)

— 00

Using the fact that

%/dwej“tB(r,w): / dw%ej‘”tB(r,w): / dwe? jwB(r, w) (6.2.5)

and by exchanging the order of differentiation and integration, that

V X / dwe’ E(r,w) = / dwe’*'V x E(r,w) (6.2.6)

— 00 — 00

Furthermore, using the fact that

/dweij(w): / dwel'B(w), Wt (6.2.7)

— 00 — 00

implies that A(w) = B(w), and using (6.2.5) and (6.2.6) in (6.2.4), and the property (6.2.7),
one gets

V x E(r,w) = —jwB(r,w) — M(r,w) (6.2.8)

These equations look exactly like the phasor equations we have derived previously, save
that the field E(r,w), B(r,w), and M(r,w) are now the Fourier transforms of the field E(r, t),
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B(r,t), and M(r,t). Moreover, the Fourier transform variables can be complex just like
phasors. Repeating the exercise above for the other Maxwell’s equations, we obtain equations
that look similar to those for their phasor representations. Hence, Maxwell’s equations can
be simplified either by using phasor technique or Fourier transform technique. However, the
dimensions of the phasors are different from the dimensions of the Fourier-transformed fields:
E(r), a phasor, and E(r,w), a Fourier transform, do not have the same dimension on closer
examination.

6.3 Complex Power

Consider now that in the phasor representations, E(r) and H(r) are complex vectors, and
their cross product, E(r) x H*(r), which still has the unit of power density, has a different
physical meaning. First, consider the instantaneous Poynting’s vector

S(r,t) = E(r, t) x H(r, ) (6.3.1)

where all the quantities are real valued. Now, we can use phasor technique to analyze the
above. Assuming time-harmonic fields, the above can be rewritten as

)= [«

1 . ) 1 . )
= 5 [Bet 4+ Bty | x 3 [H 4 (Her)] (6.3.2)
where we have made use of the formula that
1
Re(Z) = §(Z +7%) (6.3.3)

Then more elaborately, on expanding (6.3.2), we get

1 ; 1 1 1 ,
S(r,t) = 1E X He2“t 4 7B~ H* + ZE* x H+ ZE* x H*e 2wt (6.3.4)

Then rearranging terms and using (6.3.3) yield
1 1 ,
S(r,1) = SR {E x H] + 5Re {E x HeQJ‘”t} (6.3.5)

where the first term is independent of time, while the second term is sinusoidal in time. If we
define a time-average quantity such that

Sav = (S(r,t)) = lim 1 /OT S(r,t)dt (6.3.6)

T—o0

then it is quite clear that the second term of (6.3.5) time-averages to zero since it is sinusoidal,
and

Su = (S(r, 1)) = %%e []g X EI*} (6.3.7)



66 ELECTROMAGNETIC FIELD THEORY

Therefore, in the phasor representation, the quantity
S=Ex H" (6.3.8)

is termed the complex Poynting’s vector . The complex power density S (in watts per square
meter), is energy density flow associated with it, and is associated with complex power.

Figure 6.2: A simple circuit example to illustrate the concept of complex power in circuit
theory. The voltage and current are out of phase which is a frequency-domain concept.

To understand what complex power is , it is fruitful if we revisit complex power [51,55]
in our circuit theory course. The circuit in Figure 6.2 can be easily solved by using phasor
technique. The impedance of the circuit is Z = R + jwL. Hence,

V=(R+jwl)I (6.3.9)

where V and [ are the phasors of the voltage and current for time-harmonic signals. Just as
in the electromagnetic case, the complex power in watts is taken to be

P=Vvr (6.3.10)
But the instantaneous power is given by
Poee(t) = V()I(1) (6.3.11)
where V (t) = Re{Ve“!} and I(t) = Re{le?“'}. As shall be shown below,
1
Pay = (Pnst(1) = 5 Re [P} (6.3.12)
It is clear that if V'(¢) is sinusoidal, it can be written as
V(t) = Vp cos(wt) = Re [veﬂ'wt} (6.3.13)

where, without loss of generality, we assume that V = V4. Then from (6.3.9), it is clear that
V(t) and I(t) are not in phase. Namely that

I(t) = Iy cos(wt + a) = Re [{ejw'f} (6.3.14)
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where I = Iye’®. Then

Pyt (t) = Vol cos(wt) cos(wt + o)
= Vo Iy cos(wt) [cos(wt) cos(a) — sin(wt) sin o]
= VoI cos®(wt) cos a — VoI cos(wt) sin(wt) sin (6.3.15)

It can be seen that the first term does not time-average to zero, but the second term, by
letting cos(wt) sin(wt) = 0.5sin(2wt), does time-average to zero. Now taking the time average
of (6.3.15), the time average of the first term involves the time average of cos?(wt) which is
0.5, we get

1 1
Pay = (Pnst) = 3Volocosa = e [‘fﬂ (6.3.16)

- %S‘Ee [P} (6.3.17)

On the other hand, the reactive power

1 1 1 . 1
Preactive = icjm {P] = Egm [Y£*] = ism [Vofoeﬂa] = _5‘/010 sin « (6318)

One sees that amplitude of the time-varying term in (6.3.15) is precisely proportional to
Im [E] 5

The reason for the existence of imaginary part of P is because V(t) and I(t) are out of
phase or V = Vp, but I = Ipe’®. The reason for them being out of phase is because the
circuit has a reactive part to it. Hence the imaginary part of complex power is also called
the reactive power [36,51,55]. In a reactive circuit, the plots of the instantaneous power is
shown in Figure 6.3. It is seen that when « # 0, the instantaneous power can be negative.
This means that the power is flowing from the load to the source instead of flowing from the
source to the load at that instant. This happens only when the reactive power is nonzero or
when a reactive component like an inductor or capacitor exists in the circuit. When a power
company delivers power to our home, the power is complex because the current and voltage
are not in phase. Even though the reactive power time-averages to zero, the power company
still needs to deliver it to and from our home to run our washing machine, dish washer, fans,
and air conditioner etc, and hence, charges us for it. Part of this power will be dissipated in
the transmission lines that deliver power to our home. In other words, we have to pay for the
use of imaginary power!

5Because that complex power is proportional to V I*, it is the relative phase between V' and I that matters.
Therefore, o above is the relative phase between the phasor current and phasor voltage.
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Figure 6.3: Plots of instantaneous power for when the voltage and the current is in phase
(o = 0), and when they are out of phase (o # 0). In the out-of-phase case, there is an
additional time-varying term that does not contribute to time-average power as shown
in (6.3.15). Moreover, the instantaneous power can be negative.



